14.5 Videos Guide

14.5a

• The Chain Rule

• For
$$z = f(x, y)$$
, where $x = x(t)$ and $y = y(t)$, $\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$

• Exercise: Use the Chain Rule to find dz/dt. $z = \frac{x-y}{x+2y}$, $x = e^{\pi t}$, $y = e^{-\pi t}$

14.5b

• For
$$z = f(x, y)$$
, where $x = x(s, t)$ and $y = y(s, t)$,
 $\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}$ and $\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$

Exercises:

• Use the Chain Rule to find $\partial z/\partial s$ and $\partial z/\partial t$. $z = \tan^{-1}(x^2 + y^2), \quad x = s \ln t, \quad y = te^s$

14.5c

• Use the Chain Rule to find the indicated partial derivatives.

$$T = \frac{v}{2u+v}, \quad u = pq\sqrt{r}, \quad v = p\sqrt{q}r;$$

$$\frac{\partial T}{\partial p'}\frac{\partial T}{\partial q'}\frac{\partial T}{\partial r} \quad \text{when } p = 2, q = 1, r = 4$$

14.5d

• Higher-order derivatives

14.5e

• Implicit differentiation

Exercise:

• Use the above formula to find $\partial z/\partial x$ and $\partial z/\partial y$ for $x^2 - y^2 + z^2 - 2z = 4$.